Principal     Comenzar     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astrofotografía     La Colección     Foro     Blog New!     FAQ     Prensa     Login  

HD 94058


目录

图像

上传图像

DSS Images   Other Images


相关文章

The Galactic Evolution of Beryllium and Boron Revisited
The largest, highest-quality, and most near-homogeneously treated extantavailable samples of Be, B, Fe, and O abundances are analyzed on fourdifferent stellar parameter scales, considering different O abundanceindicators and deriving uncertainties in their relation with therequired aid of jackknife and bootstrap simulations/resampling. Despitelarge slope and zero-point differences, the various Fe-poor([Fe/H]<~-1) BeB-FeO relations are found to be independent ofparameter scale within the present, sometimes substantial,uncertainties. Variations in the BeB-O relations (as large as 1.12dex/dex and 1.24 dex in slope and zero point) from differing Oindicators do significantly differ; surprisingly, the largestdifferences are within the same parameter scale and not across differentones. The well-defined mean Be-Fe relation isBe~Fe1.16+/-0.04 the B-Fe relation is virtually identical,B~Fe1.17+/-0.08. The BeB-mean O relations show smallerdispersion than BeB-OH or BeB-O I relations alone, because of thesignificant reduction in parameter uncertainties, and are in remarkableagreement, indicating Be~mean O1.51+/-0.05 and B~meanO1.61+/-0.12. The latter is in good agreement with the slope(B~O1.39+/-0.08) derived for metal-rich dwarfs by Smith etal. utilizing enhanced Mg I b-f opacity and presumed reliableλ6300 [O I] and λ6158 O I features. The BeB-FeO slopes arealso all in excellent agreement with the reanalysis of Garcia Lopez, whoutilizes a Hipparcos-based gravity scale. The equivalence of the Be- andB-FeO slopes limits prodigious ν-process 11B production atlow metallicity and suggests little Galactic evolution of the B/Beratio. The BeB-mean O slopes differ significantly from pure ``primary''and ``secondary'' values, requiring a combination of productionmechanisms. The differing behavior of [O/Fe] and [Be/Fe] with [Fe/H]seems to rule out production by accelerated CO-rich grain debris inejecta of Type II supernovae having progenitor masses M>~8Msolar. Instead, the data are in fine accord withnear-primary/intermediate BeB-FeO slopes produced by varioustwo-component models, including standard GCR and superbubble production.Such models with a low-energy cosmic-ray source from supernovaerestricted to very large progenitor mass may be consistent with thelarge Be abundance in the ultra-metal-poor dwarf G64-12 found by Primaset al.; however, they predict unobserved maxima in B/Be evolution near[Fe/H]~-2, produce too much total Li at intermediate metallicity, andhave been suggested to be energetically untenable. Superbubble modelsconsidering a range of supernova progenitor mass and a constantcosmic-ray source composition predict the inferred modest or flat slopesin B/Be evolution. These models face possible difficulties inreproducing any nonprimordial Be plateaus at very low [Fe/H], and notunderproducing 6Li for [Fe/H]<~-2 additional data arerequired to provide firmer observational constraints. The BeB/FeO ratiosdo not show consistent evidence for two metal-poor populations expectedfrom bimodal (isolated supernovae and collective supernovae insuperbubbles) production mechanisms, though these signatures may be lostin the scatter or have drastically different contributing fractions.Finally, comparison of the metal-poor BeB-Fe and BeB-mean O slopessuggests that [O/Fe]~-0.25 [Fe/H]-not constant, but not as steep assuggested in some recent analyses and in agreement with the shallow[O/Fe] increase with declining [Fe/H] suggested by King.

提交文章


相关链接

  • - 没有找到链接 -
提交链接


下列团体成员


观测天体数据

星座:六分儀座
右阿森松:10h51m18.45s
赤纬:-04°44'11.4"
视星:7.151
距离:280.899 天文距离
右阿森松适当运动:-8.2
赤纬适当运动:-4.6
B-T magnitude:8.822
V-T magnitude:7.289

目录:
适当名称   (Edit)
HD 1989HD 94058
TYCHO-2 2000TYC 4917-498-1
USNO-A2.0USNO-A2 0825-07321515
HIPHIP 53055

→ 要求更多目录从vizier